CLASS – XII

Sub.: CHEMISTRY (043)

Time Allowed: :3 hours

Maximum Marks:70

General Instructions:

- (a) There are **33** questions in this question paper with internal choice.
- (b) SECTION A consists of 16 multiple choice questions carrying 1 mark each.
- (c) SECTION B consists of 5 very short answer questions carrying 2 marks each.
- (d) SECTION C consists of 7 short answer questions carrying 3 marks each.
- (e) SECTION D consists of 2 case-based questions carrying 4 marks each.
- (f) SECTION E consists of 3 long answer questions carrying 5 marks each.
- (g) All questions are compulsory.
- (h) Use of log tables and calculators is not allowed.

	SECTION – A	
1	The formation of cyanohydrin from a ketone is an example of	1
	(a) electrophilic addition	
	(b) nucleophilic addition	
	(c) nucleophilic substitution	
	(d) electrophilic substitution	
2	Which of the following is the IUPAC name of the chemical in which an ethyl group replaces	1
	one hydrogen of ammonia?	
	a) Ethanamine	
	b) Aminoethane	
	c) Ethylamine	
	d) Ethane amine	
3	Which of the following statements about starch is incorrect?	1
	a) Its soluble in warm water	

<u>Syllab</u>	<u>Syllabuswise.com</u>			
	b) It is a polymer of α-D-glucose			
	c) It is a reducing carbohydrate			
	d) It consists of branched chains			
4	Which of the following statements about a lead storage cell (or a lead-acid battery) is false?	1		
	a) It is a primary cell			
	b) The cathode is made up of lead(IV) oxide			
	c) The anode is made up of lead			
	d) The electrolyte used is an aqueous solution of sulphuric acid			
5	Which reagents are required for one step conversion of chlorobenzene to toluene?	1		
	(a) CH ₃ Cl / AlCl ₃			
	(b) CH ₃ Cl, Na, Dry ether			
	(c)CH ₃ Cl/Fe dark			
	(d) NaNO ₂ / HCl /0-50°C			
6	Which of the following has magnetic moment value of 5.9?	1		
	(a) Fe ²⁺			
	(b) Fe^{3+}			
	(c) Ni^{2+}			
	(d) Cu^{2+}			
7	Consider the given figure and mark the correct option.	1		
	Activated complex f_{E_1} F_2 Reactants Reactants coordinate \rightarrow			
	(a) Activation energy of forward read ion is $E_1 + E_2$ and product is less stable than reactant.			
	(b) Activation energy of forward reaction is $E_1 + E_2$ and product is more stable than reactant.			
	(c) Activation energy of both forward and backward reaction is $E_1 + E_2$ and reactant is more			
	stable than product.			
	(d) Activation energy of backward reaction is E_1 and product is more stable than reactant.			
8	Acetone combines with ethylene glycol in dry HCl gas to generate	1		
	a) hemiacetals			
	b) cyclic ketals			
	c) cyclic acetals			

Syllabuswise.com

	d) acetals	
9	The reaction of ethyl formate with an excess of CH ₃ MgI followed by hydrolysis gives	1
	(a) ethanol	
	(b) n-propyl alcohol	
	(c) propanal	
	(d) isopropyl alcohol	
10	The activation energy of a reaction can be determined from the slope of which of the	1
	following graph:	
	(a) lnk Vs $\frac{1}{T}$ (b) $\frac{T}{\ln k}$ Vs $\frac{1}{T}$	
	(c) lnk Vs T (d) $\frac{\text{lnk}}{\text{T}}$ Vs T	
11	Phenol can be distinguished from ethanol by the reaction with	1
	Br2/Water	
	Na	
	Glycerol	
	All of the Above	
12	Although Zirconium belongs 4d transition series and hofnium to 5d transition series even	1
	they show similar physical and chemical properties because	
	Both belongs to the d- block	
	Both have same number of electrons	
	Both have similar atomic radius due to lanthanide contraction.	
	Both belong to the same group of the periodic table	
13	Assertion : In case of phenol, bromination takes place even in absence of Lewis acid	1
	whereas bromination of benzene takes place in presence of Lewis acid like FeBr ₃ .	
	<i>Reason :</i> – OH group attached to benzene ring is highly deactivating.	
	Select the most appropriate answer from the options given below:	
	Both A and R are true and R is the correct explanation of A	
	Both A and R are true but R is not the correct explanation of A.	
	A is true but R is false.	
	A is false but R is true.	
14	Given below are two statements labelled as Assertion (A) and Reason (R)	1
	Assertion (A): Benzoic acid doesn't undergo Friedel-craft's reaction.	
	Reason (R): Benzoic acid is an activating group and undergo electrophilic substitution	
	reaction.	
	Select the most appropriate answer from the options given below.	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true and R is not the correct explanation of A.	

Syllabuswise.com

	(c) A is true but R is false.	
	(d) A is false but R is true.	
15	Assertion (A): Sucrose is called an invert sugar.	1
	Reason: On hydrolysis, sucrose bring the change in the sign of rotation from dextro (+) to	
	leavo(–)	
	Select the most appropriate answer from the options given below.	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true and R is not the correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	
16	Assertion: On increasing dilution, the specific conductance keep on increasing.	1
	Reason: On increasing dilution, degree of ionisation of weak electrolyte increases and	
	molality of ions also increases.	
	Select the most appropriate answer from the options given below.	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true and R is not the correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	
	SECTION – B	
17	The rate constant of a reaction $A \rightarrow B$ is 0.6×10^3 mol S ⁻¹ . If the concentration of [A] is 5	2
	M, then what will be concentration of [B] after 20 months?	
18	a) Define Azeotrope with an example.	2
	b) Mention the type of deviation from ideal behavior shown by solution of phenol and	
	aniline and why?	
19	An aromatic compound "A" on heated with NaNO2+ HCl produces Benzene diazomium	2
	chloride, which on further treatment with Cu ₂ Cl ₂ produces an molecule "B". While B	
	undergoes coupling reaction to produce biphenyl with an reagent C.	
	Mention A ,B & C and mention name of the coupling reaction occurred between B & C	
20	Aldehyde, Ketone and Carboxylic acids	2
	Write the reactions involved in the following reactions:	
	(i) Clemmensen reduction	
	(ii) HVZ reaction	
	OR	
	Do the following conversions in not more than two steps:	
	(i) Benzoic acid to benzaldehyde	
	(ii)Propanone to Propene	
L	1	1

Syllabuswise.com

21	i)Write the structure of the product obtained when glucose is oxidised with nitric acid.	2
	ii)What are the products of hydrolysis of sucrose?	
	iii) Which component of starch is a branched polymer of a-glucose and insoluble in water?	
	SECTION – C	
22	(a) [CrCl ₂ (en) ₂]Cl? Write the IUPAC Name.	3
	(b)On the basis of CFT, write the electronic configuration of d^5 ion if $\Delta_0 < P$.	
	(c) $[Cr(NH_3)_6]^{3+}$ is paramagnetic but $[Ni(CN)_4]^{2-}$ is diamagnetic. Explain why?	
23	A copper-silver cell is set up. The copper ion concentration in it is 0.10 M. The concentration	3
	of silver ion is not known. The cell potential is measured 0.422 V. Determine the	
	concentration of silver ion in the cell.	
	Given : $E^{\circ}_{Ag}^{+}/Ag = +0.80 \text{ V}, E^{\circ}_{Cu}^{2+}/Cu = +0.34 \text{ V}.$ (Antilog 1.14493=13.93)	
24	a) How do you convert Propan-2-ol to 2-methylpropan-2-ol	3
	b) Sate Reimer-Tiemann reaction	
	c) Phenol is more acidic than ethanol, explain.	
25	An alkene 'A' (Mol. formula C ₅ H ₁₀) on ozonolysis gives a mixture of two compounds, 'B'	3
	and 'C'. Compound B' gives positive Fehling's test and forms iodoform on treatment with	
	I2 and NaOH. Compound C' does not give Fehling's test but forms iodoform. Identify the	
	compounds A, B, and C. Write the reaction for ozonolysis and formation of iodoform from B	
	and C.	
	OR	
	a)Write IUPAC name of the following :	
	C_2H_5	
	o	
	b) Write the equations involved in Wolff-Kishner reduction.	
	(c) What is formed when Tolune undergo treatment with chromyl chloride followed by	
	hydrolysis?	
26	Answer the following questions:	3
	(a) What is essential and nonessential amino acids?	
	Write one example of each.	
	(b) What is the difference between a nucleoside and a nucleotide?	
27	a) Chloroform is stored in dark coloured bottles.	3

	b)Mention the product formed.	
	(i) $\longrightarrow OH \xrightarrow{SOCl_2}$	
	(<i>ii</i>) $-CH_2 - CH = CH_2 + HBr \xrightarrow{Peroxide}$	
28	a) The rate of a reaction becomes four times when the temperature changes from 293 K to	3
	313 K. Calculate the energy of activation (E_a) of the reaction assuming that it does not	
	change with temperature. [$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$, log $4 = 0.6021$]	
	b) Define Pseudo first order reaction with examples.	
	SECTION – D	
29	Werner's theory of complex compounds says every metal atom or ion has primary valency	2+1+
	(oxidation state) which is satisfied by -vely charged ions, ionisable where secondary valency	1
	(coordination number) is non-ionisable, satisfied by Iigands (+ve, -ve, neutral) but having	
	lone pair. Primary valency is non-directional, secondary valency is directional. Complex	
	compounds are name according to IUPAC system. Valence bond theory helps in determining	
	shapes of complexes based on hybridisation, magnetic properties, outer or inner orbital	
	complex. Complex show ionisation, linkage, solvate and coordination isomerism also called	
	structural isomerism. Some of them also show stereoisomerism i.e. geometrical and optical	
	isomerism. Ambidentate ligand are essential to show linkage isomerism. Polydentate	
	Ligands form more stable complexes then unidentate ligands. There are called chelating	
	agents. EDTA is used to treat lead poisoning, cis-platin as anticancer agents. Vitamin B_{12} is	
	complex of cobalt. Hemoglobin, oxygen carrier is complex of Fe^{2+} and chlorophyll essential	
	for photosynthesis is complex of Mg^{2+} .	
	(a) One mole of $CrCI_3$. $6H_2O$ reacts with excess of $AgNO_3$ to yield 2 mole of AgCI.	
	Determine the Molecular formula of complex, do the IUPAC name of the compound.	
	OR	
	(a) What is hybridization, shape and magnetic properties of $[CoF_6]^{3-}$ [Co = 27].	
	(b) Out [Fe(CO) ₅], [Fe(C ₂ O ₄) ₃] ³⁻ , [Fe(H ₂ O ₆) ³⁺ , [Fe(CN) ₆] ³⁻ , which is most stable?	
	(c) Out Cis - $[Pt(en)_2 CI_2]^{2+}$ and trans $(Pt(en)_2 CI_2)^{2+}$ which one shows optical isomerism?	
30	Metallic conductance involves movement of electrons where as electrolytic conductance	1+1+
	involves movement of ions. Specific conductance increases with increase in concentration	2
	where as A_m (molar conductivity) decreases with increase in concentration. Electrochemical	
	cell converts chemical energy of redox reaction into electricity. Mercury cell, Dry cells are	
	primary cells where as Ni-Cd cell, lead storage battery are secondary cells. Electroehemical	
	series is arrangement of elements in increasing order of their reduction potential. Electrolytic	
	cell converts electrical energy into chemical energy which is used in electrolysis. Amount of	
	products formed are decided with the help of Faraday's laws of Electrolysis. Kohlrausch law	

	helps to determine limiting molar conductivity of weak electrolyte, their degree of ionisation	
	(α) and their dissociation constants.	
	(a) Out of 0.5 M, 0.01 M, 0.1 M and 1.0 M which solution of KCl will have highest value of	
	specific conductance?	
	(b) Write the product of electrolysis of aq. NaCI on cathode.	
	(c) For an electrochemical cell $Mg(s) + 2Ag^{+}(aq) \rightarrow 2Ag(s) + Mg^{2+}$. Give the cell	
	representation and write Nernst equation.	
	OR	
	(c) State Kohlrausch's law with examples.	
	SECTION – E	
31	Explain the following observations : (Any five)	5
	(a) Generally there is an increase in density of elements from titanium ($Z = 22$) to copper (Z	
	= 29) in the first series of transition elements.	
	(b) Transition elements and their compounds are generally found to be good catalysts in	
	chemical reactions.	
	(c)The chemistry of actinoids is not so smooth as that of lanthanoids	
	(d) The ionization enthalpies (first and second) in the first series of the transition elements	
	are found to vary irregularly.	
	(e) Represent the oxidising action of potassium dichromate and write the ionic equations for	
	its reaction with iodine.	
	(f) Zinc is not regarded as a transition element.	
	(g)Transition elements generally form coloured compounds	
32	a) Three molecules of a solute (A) associate in benzene to form species A ₃ . Calculate the	3+1+
	freezing point of 0.25 molal solution. The degree of association of solute A is found to be	1
	0.8. The freezing point of benzene is 5.5°C and its Kf value is 5.13 K/m.	
	b) Define mole fraction.	
	c)1 Molar and 1 molal solution heated simultaneously, which one's value will remain	
	unchanged after heating? Why?	
	OR	
	a) An aqueous solution containing 3.12 g of barium chloride in 250 g of water is found to be	3+1+
	boil at 100.08°C Calculate the degree of dissociation of barium chloride. Given molar mass	1
	$BaCl_2 = 208 gmol^{-1}$, Kb for water = 0.52 K/m	
	b) Define the term 'Reverse osmosis'.	
	c) Between 1 molar aqueous solution and 1 molal aqueous solution, which contains more	
	volume of Solvent? Explain	

